Offchain services powered by TEEs
Deploy your backends or extend your smart contracts on Oyster with minimal changes
Powerful Primitives
Designed for a secure and sovereign future
Built For Scale
Deliver a seamless web 2 experience with a decentralized backend
AI models
Run risk assessment algorithms for lending or margin protocols, develop recommendation systems for DeSoc or develop autonomous worlds with dynamic environments
Exchanges
Build low-latency high-throughput DEXes for spot, perps, options or futures with a verifiable matching and/or liquidation engine whose code can be compared against the executable
Oracles
Allow anyone to offer trustless price feeds secured by enclaves whether by simply querying web2 APIs and RPC endpoints or performing additional computation without fear of manipulation or data corruption
Gateways
Deploy decentralized web3 gateways for RPCs that bridge decentralized networks with native browsers, enabling seamless interaction between web3 apps and web2 environments
Games
Push quick updates to gaming servers with the familiarity of self-hosted infrastructure while leveraging low-latency geographical distribution, load balancing and auto-scaling benefits of a decentralized cloud network
Frontends
Decentralize your UI and relieve yourself of the stress of ensuring availability to your DApp while preventing phishing and ensuring HTTPS certificates are only issued to nodes serving the whitelisted codebase
Rent an Instance on Oyster Cloud
Scale With Serverless
Execute functions over a global pool of nodes
with zero DevOps overhead
import * as tfc from "@tensorflow/tfjs-core";
import * as tfl from "@tensorflow/tfjs-layers";
import '@tensorflow/tfjs-backend-cpu';
export default {
async fetch(request: Request): Promise
tfc.setBackend('cpu');
// Create a simple model.
const model = tfl.sequential();
model.add(tfl.layers.dense({ units: 1, inputShape: [1] }));
// Prepare the model for training: Specify the loss and the optimizer.
model.compile({ loss: 'meanSquaredError', optimizer: 'sgd' });
// Generate some synthetic data for training. (y = 2x - 1)
const xs = tfc.tensor2d([-1, 0, 1, 2, 3, 4], [6, 1]);
const ys = tfc.tensor2d([-3, -1, 1, 3, 5, 7], [6, 1]);
console.log(model);
// Train the model using the data.
await model.fit(xs, ys, { epochs: 250 });
await model.save({save: console.log});
let res = (model.predict(tfc.tensor2d([20], [1, 1])) as tfc.Tensor).dataSync()[0];
console.log(res);
return new Response(res.toString());
}, };Connect your wallet
Proxy re-encryption is used when sharing data between the matching engine and the prover’s enclaves. Proxy re- encryption is used when sharing data between the matching engine and the prover’s enclaves
Questions?
We have answers
A trusted execution environment (TEE) is a secure area of a main processor. It helps code and data loaded inside it to be isolated from other processes usually at a hardware level in order to provide confidentiality and integrity. Data integrity prevents unauthorized entities from outside the TEE from altering data, while code integrity prevents code in the TEE from being replaced or modified by unauthorized entities, which may also be the computer owner itself.
Oyster is a sub-network of Marlin that specializes in offering TEE-based coprocessors. It is fast, cheap and secure. It allows instances to be rented individually for any stretch of time or for tasks to be delegated amongst a pool of nodes in a serverless way without individually renting instances and paying only for the duration of the task's execution. Nodes can be rented and tasks delegated using both smart contract calls and web 2 APIs. A set of auditors routinely query Oyster nodes to ensure uptime guarantees.
Oyster is very flexible and versatile. Developers can port existing web 2 applications on Oyster, write code in the programming language of their choice and use popular libraries and frameworks. Additional benefits include:
1. Secure: Hardware isolation ensures that programs run correctly as intended without exposing their contents and prohibiting interference from the host machine or its owner.
2. Fast: Oyster nodes are essentially like usual servers. There’s no redundancy in computation, complex protocol logic or cryptography. Thus, apart from a little TEE overhead for encrypted memory access, Oyster nodes are very performant and provide an experience similar to running programs on a normal machine.
3. Cheap: TEEs can be considered commoditized. While a little more expensive than vanilla servers, they are very cheap compared to blockchains, MPC, FHE or ZK proofs. Consequently, TEEs are a very affordable mode to carry out computations verifiably.
Oyster is a permissionless network. As such, programmers can contribute to its codebase, developers can build trustless web 3 applications by deploying their backends on Oyster nodes and infrastructure providers can run TEE-enabled Oyster nodes.
Features | Trusted Execution Environments (TEEs) | Zero-Knowledge Proofs (zk) |
---|---|---|
Main Purpose | Secure execution of code in an isolated environment | Prove knowledge without revealing it |
Scalability | Generally good, limited by hardware | Limited by computational overhead |
Performance | Faster as it leverages direct hardware support | Generally slower due to the cryptographic operations required |
Support for Complex Computations | Better suited for complex computations, given adequate TEE capabilities | Limited, best suited for simpler proofs |
Development Complexity | Medium, as it often involves utilizing existing hardware features | High, requires expertise in cryptography |
Integrity Verification | Verified by hardware and software measures internal to the TEE | Can be verified publicly without revealing underlying data |
Trust Model | Hardware-based trust; relies on the manufacturer and design of the TEE | Cryptographic trust; no need for trusted hardware |
Overhead | Low to medium, depending on the implementation | High, due to complex calculations |
Portability | Dependent on specific hardware and therefore less portable | Can be implemented in software across different platforms |
Data Privacy | Yes, data is protected within the TEE | Yes, no data is revealed |
Regulatory Acceptance | Subject to hardware security review and potential backdoor concerns | Subject to cryptographic review |
Attestation Capability | Hardware and software attestation mechanisms provide trust assurance | Mathematical proof provides attestation of correctness |
Finality | Instant execution within the TEE | Instant verification once proof is computed |
Maturity | Well-established with industry standards | Relatively new, rapidly evolving |